
Beyond gsl::narrow_cast

CREATING DOMAIN SPECIFIC CASTING OPERATIONS TO INDICATE
INTENT AND REDUCE ERRORS.

Nick Deguillaume: nick@riskpath.co.uk

27/10/2022

ACCU - Bristol

1

mailto:nick@riskpath.co.uk

gsl::narrow / gsl::narrow_cast

What are they?
 gsl::narrow_cast just a searchable wrapper around static_cast.

 gsl::narrow similar to narrow_cast but throws an exception if the static cast
would cause a truncation of the arithmetic value.

2

gsl::narrow / gsl::narrow_cast

Great idea BUT……..
 I am writing an application, not a library. Therefore I want an assertion on failure

not an exception.

 The Microsoft implementation I found does not take advantage of C++20

concepts.

 narrow_cast and narrow do not take things far enough!

It got me thinking………
 Can I replace all instances of static_cast, reinterpret_cast, const_cast and

dynamic_cast in my codebase with custom casts?

 Is this even a good idea? ….. As it turns out YES….I THINK SO….

3

Replacing dynamic_cast

We are going to need some concepts…

4

Replacing dynamic_cast

And a slightly more advanced one…

And its natural derivatives…

5

Replacing dynamic_cast

downCast – constant pointer version

Works with constant pointer input and when there is no virtual inheritance between

Base and derived.

6

Replacing dynamic_cast

downCast – non constant pointer version

Works with non constant pointer input and when there is no virtual inheritance

between Base and derived.

7

Replacing dynamic_cast

downCast - In action …

8

Replacing dynamic_cast
downCast - Don’t forget the reference versions …

9

Replacing dynamic_cast
virtualDownCast

 You are going to need this version if virtual inheritance makes a static cast

impossible.

 It is nice to have a different (and longer) name since this cast is more costly.

 This slide shows one of four overloads (const | non-const) X (pointer |reference)

10

Casting To and From void* 11

 toVoidPointer only

accepts non void pointers

 voidPointerTo only accepts
void pointers. No implicit
conversions!!!!!!!!!!

 Really useful when inter-

operating with C code

Some example numeric casts

conversions

12

 I use a lot of these. This is a
small sample.

 Note that size_t_to will only

accept size_t. Really useful
when you need to
compile in both 32 and 64

bit.

Alias of std::byte

Some other conversions 13

 Warning!!!
sameSzCharPtrCast can

lead to undefined

behaviour!

 For example, when

converting from

const char* to char8_t*

Some tips… 14

 Make each cast as narrow as possible. (Concepts are helpful)

 Name your casts well!

 Keep all your casts together so they can be found by your co-workers.

 Avoid implicit conversions on the inputs. (Use std::same_as<> and other

concepts to enforce this).

 Use plenty of static_asserts and runtime asserts.

 Use constexpr and constexpr if, where possible. (reinterpret_cast will spoil this)

 If you come across a new situation, you will probably need a new cast.

 Ban the use of const_cast, reinterpret_cast, static_cast and dynamic_cast, unless

they are inside one of the custom cast functions.

Some benefits I have seen… 15

 Catching more bugs at compile time and run time.

 Less noisy and more concise code.

 More readable code.

 Less noise from the linter.

 Forces me to really think about what I am doing. Considering what asserts I can

and should use makes my code more secure.

