
Beyond gsl::narrow_cast

CREATING DOMAIN SPECIFIC CASTING OPERATIONS TO INDICATE
INTENT AND REDUCE ERRORS.

Nick Deguillaume: nick@riskpath.co.uk

27/10/2022

ACCU - Bristol

1

mailto:nick@riskpath.co.uk

gsl::narrow / gsl::narrow_cast

What are they?
 gsl::narrow_cast just a searchable wrapper around static_cast.

 gsl::narrow similar to narrow_cast but throws an exception if the static cast
would cause a truncation of the arithmetic value.

2

gsl::narrow / gsl::narrow_cast

Great idea BUT……..
 I am writing an application, not a library. Therefore I want an assertion on failure

not an exception.

 The Microsoft implementation I found does not take advantage of C++20

concepts.

 narrow_cast and narrow do not take things far enough!

It got me thinking………
 Can I replace all instances of static_cast, reinterpret_cast, const_cast and

dynamic_cast in my codebase with custom casts?

 Is this even a good idea? ….. As it turns out YES….I THINK SO….

3

Replacing dynamic_cast

We are going to need some concepts…

4

Replacing dynamic_cast

And a slightly more advanced one…

And its natural derivatives…

5

Replacing dynamic_cast

downCast – constant pointer version

Works with constant pointer input and when there is no virtual inheritance between

Base and derived.

6

Replacing dynamic_cast

downCast – non constant pointer version

Works with non constant pointer input and when there is no virtual inheritance

between Base and derived.

7

Replacing dynamic_cast

downCast - In action …

8

Replacing dynamic_cast
downCast - Don’t forget the reference versions …

9

Replacing dynamic_cast
virtualDownCast

 You are going to need this version if virtual inheritance makes a static cast

impossible.

 It is nice to have a different (and longer) name since this cast is more costly.

 This slide shows one of four overloads (const | non-const) X (pointer |reference)

10

Casting To and From void* 11

 toVoidPointer only

accepts non void pointers

 voidPointerTo only accepts
void pointers. No implicit
conversions!!!!!!!!!!

 Really useful when inter-

operating with C code

Some example numeric casts

conversions

12

 I use a lot of these. This is a
small sample.

 Note that size_t_to will only

accept size_t. Really useful
when you need to
compile in both 32 and 64

bit.

Alias of std::byte

Some other conversions 13

 Warning!!!
sameSzCharPtrCast can

lead to undefined

behaviour!

 For example, when

converting from

const char* to char8_t*

Some tips… 14

 Make each cast as narrow as possible. (Concepts are helpful)

 Name your casts well!

 Keep all your casts together so they can be found by your co-workers.

 Avoid implicit conversions on the inputs. (Use std::same_as<> and other

concepts to enforce this).

 Use plenty of static_asserts and runtime asserts.

 Use constexpr and constexpr if, where possible. (reinterpret_cast will spoil this)

 If you come across a new situation, you will probably need a new cast.

 Ban the use of const_cast, reinterpret_cast, static_cast and dynamic_cast, unless

they are inside one of the custom cast functions.

Some benefits I have seen… 15

 Catching more bugs at compile time and run time.

 Less noisy and more concise code.

 More readable code.

 Less noise from the linter.

 Forces me to really think about what I am doing. Considering what asserts I can

and should use makes my code more secure.

