
WTF?
The Wobbly Transformation Format

and the

Windows File System

Nick Deguillaume: nick@riskpath.co.uk

https://www.riskpath.co.uk/presentations/WTF-WindowsFileSystem.pdf

25th January 2024

ACCU - Bristol

1

mailto:nick@riskpath.co.uk
https://www.riskpath.co.uk/presentations/WTF-WindowsFileSystem.pdf

Character Encoding History 2

JIS ASCII - 1963 Morse CodeShift_JIS EUC Extended ASCII GBK EUC-KR KPS 9566 Scandinavian Encodings

UTF-8 (1-6 bytes / codepoint. Encodes 2,147,483,648 codepoints)

+ + →

UTF-16 (2 bytes per codepoint. Encodes 65,536 codepoints)

Historical

Unicode v1 1988 - 1996

UTF-8 (1-4 bytes per codepoint. Encodes 1,112,064 codepoints) UTF-16 (2-4 bytes / codepoint. Encodes 1,112,064 codepoints)

Unicode v2+ 1996 onwards

UTF-8 won the battle of the

internet with 98.1% of web

pages encoded in UTF-8.

Modern UTF-16 is not pretty. However, It will

continue to exist due to the operating

systems and vast amount of software

employing it. However, even Microsoft now

recommend to use UTF-8 where possible.

UTF-16 and WTF-16

[0x0000

3

0x10000)[0xD800, 0xE000)

Basic Multilingual Plane Basic Multilingual Plane

High Surrogate [0xD800, 0xDC00) Low Surrogate [0xDC00, 0xE000)

Legal UTF-16

 Any 16-bit value on the basic multilingual plane: [0x0000, 0D800) ∪ [0xE000, 0x10000)

 Any 16-bit high surrogate: [0xD800, 0xDC00) so long as it is followed by a low surrogate

 Any 16-bit low surrogate: [0xDC00, 0xE000) so long as it is preceded by a high surrogate

WTF-16

 Any 16-bit value: [0x0000, 0x10000). No restrictions apply

UTF/WTF-16 → UTF/WTF-8 Conversion 4

UTF-16 → UTF-32

 If a 16-bit value is on the basic multilingual plane, then
the natural map applies. For example:

 0xFFFF → 0x0000FFFF

 Otherwise, we take two 16-bit values: H (guaranteed
to be a high surrogate) and L (guaranteed to be a low
surrogate) and apply the formula:

 (H - 0xD800) * 0x400 + (L – 0xDC00) + 0x10000

WTF-16 → WTF-32

 If a 16-bit value is on the basic multilingual plane or if
together with the next 16-bit value, it forms a high
surrogate / low surrogate pair then we perform the
same operation as UTF-16 → UTF-32

 Otherwise, the natural map applies. For example:

 0xDC00 → 0x0000DC00

UTF/WTF-32 → UTF/WTF-8

 View the 32-bit representation as binary. For example, we view
the first low surrogate 0x0000DC00 as:

 0b00000000 00000000 11011100 00000000

 Count the minimum number of bits required to represent the

value. In this case 16 bits are required.

 Look up the number of UTF/WTF-8 bytes required in the

following table:

 We have 16 bits so three UTF/WTF8 bytes are required.

 Fill in the ‘x’ bits of the pattern provided in the table above

starting from the right. This gives:

 0b11011100 00000000 → 0b11101101 0b10110000 0b10000000

 Convert to hex if desired:

 0b11101101 0b10110000 0b10000000 → 0xED 0xB0 0x80

First High

Surrogate

Scale Normalised High

Surrogate by 1,024 = 2^10
1st Low

Surrogate

Add on 65,536 to bring you

past the Basic Multilingual

Plane

UTF-32

UTF/WTF-32 bits # UTF/WTF-8 bytes Byte 0 Byte 1 Byte 2 Byte 3
0 - 7 1 0xxxxxxx

8 - 11 2 110xxxxx 10xxxxxx

12 - 16 3 1110xxxx 10xxxxxx 10xxxxxx

17 - 21 4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

WTF-8 String Representation 5

What do we want?
 Any codepoint that is UTF-8 representable to be represented in the same way as it is in

UTF-8

 The lone surrogates should use the same calculation as is used to get from UTF-32 to

UTF-8

When we convert a WTF-8 string to WTF-16 and then back again, we want

to recover the same representation that we started with. Our conversion

function is already set, so we must limit the space of WTF-8 strings in order

for the bijection to apply.

To do this we must avoid:

▪ Overlong Encodings

▪ Accidental Surrogate Pairs

WTF/UTF-8 Overlong Encodings 6

Consider the codepoint ‘A’ with Unicode representation (U+0041).

The only correct UTF/WTF-8 representation of this is 0x41 or 0b01000001.

However, a hacker could represent the same value using an overlong

sequence:

One byte (correct): 0b01000001

Two bytes (incorrect): 0b11000001 0b10000001

Three bytes (incorrect): 0b11100000 0b10000001 0b10000001

Four bytes (incorrect): 0b11110000 0b10000000 0b10000001 0b10000001

The only permissible UTF/WTF-8 encoding is the shortest one.

WTF-8 - Accidental Surrogate Pair 7

 Consider the supposed WTF-8 hex sequence:
 ED A0 80 ED B0 80

 ED A0 80 and ED B0 80 individually represent

valid WTF-8 codepoints:

▪ ED A0 80 represents the first high

surrogate: U+D800

▪ ED B0 80 represents the first low

surrogate: U+DC00

 Note that these are not individually valid

 UTF-8 codepoints.

 So in UTF/WTF-16, the sequence is:
 0xD800 0xDC00

 This is actually the Unicode value:
 (0xD800 - 0xD800) * 0x400 +
 (0xDC00 – 0xDC00) + 0x10000 =
 U+10000

 In binary U+10000 is:
 0b00000001 00000000 00000000

 Converting to UTF/WTF-8 gives:
 0b11110000 0b10010000 0b10000000 0b10000000

 In hexadecimal this is: F0 90 80 80

 This is not the same sequence that we started with!

 To avoid accidental surrogate pairs in WTF-8,

we disallow a high surrogate sequence

directly followed by a low surrogate

sequence.

This fact needs to be considered in WTF-8

string concatenation.

Accidental surrogate pairs are impossible in

UTF-8 because lone surrogates are illegal.

UTF-8 – UTF-16 Comparison 8

Feature UTF-8 UTF-16

Encodes all Unicode points ✓ ✓

Self-synchronising ✓ ish…

Better error detection ✓ ✗

Usually more compact ✓ ✗

More compact for some Asian languages ✗ ✓

Endianness agnostic ✓ ✗

Never contains eight zero bits in a row when a null is not present ✓ ✗

Has same ordering as Unicode under naïve byte comparison ✓ ✗

Identical ASCII representation ✓ ✗

If you are a Windows developer, using it will make Linux developers look down

on you a little bit less
✓ ✗

CreateFileW Win API function 9

Mode Desired Access Share Mode Creation Disposition** Flags and Attributes

Open existing file in

read-only mode GENERIC_READ FILE_SHARE_READ OPEN_EXISTING FILE_ATTRIBUTE_NORMAL

Open in read/write

mode with no

truncation

GENERIC_READ |
GENERIC_WRITE |

DELETE - OPEN_EXISTING FILE_ATTRIBUTE_NORMAL

Create new file that

is deleted on handle

close *

GENERIC_READ |
GENERIC_WRITE |

DELETE - CREATE_NEW FILE_ATTRIBUTE_NORMAL

Open file or directory

for information

purposes GENERIC_READ
FILE_SHARE_READ |
FILE_SHARE_WRITE OPEN_EXISTING FILE_FLAG_BACKUP_SEMANTICS

* If the third option is chosen, the file disposition should be set to delete using the Win API function:
SetFileInformationByHandle with the FileInformationClass parameter set to FileDispositionInfo.

The CreateFileW function has many options. Some combinations are sensible. Some are not. The table below
shows some sensible combinations.

** Avoid OPEN_ALWAYS and CREATE_ALWAYS. They are not necessary and have been linked to vulnerabilities.

Handle-Based Win API Functions
Basic Input / Output Functions (Useful in creating streams)

10

Function Used For

SetFileTime Set creation time, last access time, last write time.

SetFileInformationByHandle Mark read-only, set delete disposition, reserve, resize, rename.

GetFileInformationByHandleEx
Determine read-only status, last write time, capacity.

Determine location i.e. volume and file-id.

GetFinalPathNameByHandleW
Gives actual case of file path. Useful when interfacing with Linux

where file paths are case sensitive.

Function Used For

GetFileSizeEx File size.

ReadFile Read from file or other stream.

WriteFile Write to file or other status.

SetFilePointerEx Set file pointer / determine file pointer.

FlushFileBuffers Flush file buffers.

Get / Set File Attributes

More Win API Functions 11

Function Used For

SHGetKnownFolderPath Get known folder such as local app data.

ExpandEnvironmentStringsW Substitute environment variables such as %LOCALAPPDATA%.

GetLongPathNameW Gets long path from short path.

GetShortPathNameW Gets short path.

WNetGetUniversalNameW Universal name for a file on a network.

MoveFileExW Useful in renaming a directory.

GetFileAttributesW Useful in finding whether a file or directory is read-only.

Function Used For

CryptProtectData Protect data so only the user who called this function can read it.

CryptUnprotectData Decrypt data encrypted via CryptProtectData.

CryptProtectMemory Protects memory in place. Useful for in-process encryption of passwords and keys.

CryptUnprotectMemory Unprotect memory in place.

Path-Based Win API Functions

Cryptographic Win API Functions

Plenty more at… https://learn.microsoft.com/en-us/windows/win32/api/fileapi/

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/

Tips and Links
 Consider using the WIL library. It provides a modern C++ wrapper over the windows

API functions.

 Consider using Natvis files to make debugging your custom types easier.

 When using third party tools consider Google. Their tools seem to be well tested on

MSVC and Visual Studio. Personally, I use:

• Abseil - Efficient containers (C++)

• Google Test - Testing (C++)

• Gumbo - Html parsing (C)

12

 https://simonsapin.github.io/wtf-8/

 https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file

 https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/file-folder-

name-whitespace-characters

 https://learn.microsoft.com/en-us/windows/win32/api/fileapi/

https://simonsapin.github.io/wtf-8/
https://docs.microsoft.com/en-us/windows/win32/fileio/naming-a-file
https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/file-folder-name-whitespace-characters
https://learn.microsoft.com/en-us/troubleshoot/windows-client/shell-experience/file-folder-name-whitespace-characters
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/

	Slide 1: WTF? The Wobbly Transformation Format and the Windows File System
	Slide 2: Character Encoding History
	Slide 3: UTF-16 and WTF-16
	Slide 4: UTF/WTF-16 → UTF/WTF-8 Conversion
	Slide 5: WTF-8 String Representation
	Slide 6: WTF/UTF-8 Overlong Encodings
	Slide 7: WTF-8 - Accidental Surrogate Pair
	Slide 8: UTF-8 – UTF-16 Comparison
	Slide 9: CreateFileW Win API function
	Slide 10: Handle-Based Win API Functions
	Slide 11: More Win API Functions
	Slide 12: Tips and Links

